Acta Cryst. (1966). 20, 716

The Crystal Structure of Eu₃O₄*

BY ROBERT C. RAU

General Electric Company, Nuclear Materials and Propulsion Operation, Cincinnati, Ohio, U.S.A.

(Received 19 August 1965)

The crystal structure of trieuropium tetroxide, Eu_3O_4 , has been determined from single-crystal X-ray diffraction data. This compound, containing both divalent and trivalent europium ions, is isomorphous with CaFe₂O₄. It crystallizes in the orthorhombic system, space group *Pnam*. The unit cell has dimensions a = 10.085, b = 12.054, c = 3.502 Å, and contains four formula units. The structure is layered along the short c axis, having all atoms on mirror planes at $z = \frac{1}{4}$ and $z = \frac{3}{4}$. Least-squares refinement of x and y positional parameters and isotropic temperature factors was based on 955 observed independent hk0 and hk1 reflections, and established the structure with a final R of 0.089. The coordination of oxygens around trivalent europium is sixfold, forming a distorted octahedron around each Eu^{3+} ion. Around divalent europium the coordination is eightfold, with each Eu^{2+} ion lying at the center of a triangular prism of six oxygen atoms. Two oxygen atoms lying out from the centers of two of the prism faces complete the coordination.

Introduction

In the search for more efficient nuclear reactor control materials, ceramic compounds containing some of the rare earth ions having high neutron capture cross sections have been studied under conditions simulating possible reactor environments. During high-temperature tests of monoclinic europium sesquioxide (Eu_2O_3) under reducing conditions, it was found that this normally yellowish-white colored oxide could be reduced to a dark red-brown to blackish material. Powder X-ray diffraction patterns showed that this material was not the NaCl-type cubic divalent monoxide, EuO, reported by Eick, Baenziger & Eyring (1956), but indicated a more complex structure. Subsequent single-crystal studies indicated that this new compund was orthorhombic, having approximate unit-cell dimensions of a = 10.07, b = 12.01, and c = 3.50 Å, and had a measured density of 8.03 g.cm⁻³. By comparison of this measured density with that calculated with various possible combinations of europium and oxygen in the unit cell, the compound was deduced to be trieuropium tetroxide, Eu₃O₄, containing both divalent and trivalent cations.

The existence of a compound corresponding to the composition Eu_3O_4 was first reported by Achard (1960) He obtained an intermediate phase, having an oxygen to europium ratio of approximately 1.3, during his studies of carbon reduction of Eu_2O_3 to EuO. Later, Bärnighausen & Brauer (1962) reported the preparation of Eu_3O_4 by heating an equimolar mixture of EuO and Eu_2O_3 at 900 °C in an inert atmosphere. Although these authors reported the lattice parameters and space group for Eu_3O_4 and the isomorphous compound $SrEu_2O_4$, and showed that these compounds are structurally related to calcium ferrite, CaFe₂O₄ (Decker &

Kasper, 1957), they did not carry out the complete crystal structure analysis. Recently, Schieber & Holmes (1964) prepared mixtures of Eu_3O_4 in Eu_2O_3 during attempts to reduce the sesquioxide in carbon monoxide atmosphere.

Preparation of Eu₃O₄

For the present study, Eu_3O_4 was prepared by several methods. The first preparation occurred accidentally when Eu_3O_4 was formed as a granular black layer approximately one millimeter thick surrounding a core of Eu_2O_3 which had been hot-pressed in a graphite die at 3.5 kg.cm^{-2} (50 lb.in⁻²) at 1700 °C. Single-crystal fragments chipped from this layer were used for the present structure analysis.

Subsequent to this initial preparation, a reliable method of producing single-phase Eu_3O_4 was developed consisting of hydrogen reduction of the sesquioxide or the hydroxide. This method, which involved heating Eu_2O_3 or $Eu(OH)_3$ in a hydrogen atmosphere at 1650 °C, yielded coarsely polycrystalline black chunks of Eu_3O_4 . Single-crystal fragments from these chunks appeared dark red under the polarizing miscroscope, and were found to be biaxial with refractive indices near 2.12. Grinding chunks of Eu_3O_4 produced a red-brown powder.

Preliminary analyses

Preliminary Weissenberg and precession photographs established the orthorhombic symmetry, and showed reflections present for the following conditions:

> h00, 0k0, 00l only when h, k, l=2nh0l only when h=2n0kl only when k+l=2nhk0, hkl without regular extinctions.

These conditions are satisfied by space groups $Pna2_1$ (No.33) and Pnam (Pnma, No.62). Assignment of the

^{*} This paper originated from work sponsored by the Fuels and Materials Development Branch, Atomic Energy Commission under Contract AT(40-1)-2847.

centrosymmetric space group was based upon consideration of the reflection intensities. As pointed out by Bärnighausen & Brauer (1962), alternate layers along the short c axis exhibit similar intensities, thus indicating that all atoms must lie on two planes separated by $\frac{1}{2}$ in z. This condition is fulfilled only by the special fourfold positions (c) in the space group *Pnam*, where all atoms have $z = \frac{1}{4}$ or $\frac{3}{4}$.

Lattice parameters derived from the single-crystal films were refined by means of powder data. The Eu₃O₄ powder pattern was obtained with iron $K\alpha$ radiation on a Norelco diffractometer (Rau, 1964). Indexed back-reflection lines from that pattern were used to calculate the lattice parameters, using the computer program of Mueller, Heaton & Miller (1960). The values obtained are listed in Table 1, and are seen to agree closely with those reported by Bärnighausen & Brauer (1962). With these values, and assuming four formula units per unit cell, the theoretical density of Eu₃O₄ is 8·11 g.cm⁻³, in good agreement with the measured value of 8·O3 g.cm⁻³.

Table	1.	Lattice	parameters	of	Eu	0
I GOIV		Duitice	purumerers	\mathbf{v}_{I}		

		Bärnighausen &
	This study	Brauer (1962)
а	10.085 ± 0.002 Å	10·094±0·003 Å
b	12.054 ± 0.002	12.068 ± 0.003
с	3.502 ± 0.001	3.500 ± 0.001

Computing procedures

For the structure analysis of Eu_3O_4 , the 'X-ray 63' crystal structure calculation system of Stewart & High (1964) was used on an IBM 7094 computer. This system is composed of an integrated set of computer programs for preparing the data and making the many different calculations involved in crystal structure analysis. Interconnection of the links of the system makes it possible to use the programs individually or in continuous sequence, with the output of one program serving as input to the next.

Collection of data

Although a preliminary set of Weissenberg photographs was obtained using copper radiation, these photographs were felt to be unsuitable for the structure analysis, since the extremely high absorption coefficient ($\mu = 3033 \cdot 95 \text{ cm}^{-1}$) of Eu₃O₄ for Cu K α radiation would cause large errors in measured intensities. Accordingly, Mo K α radiation was chosen ($\mu = 438 \cdot 75$ cm⁻¹). The crystal used for intensity collection was approximately needle-shaped, being elongated along the *c* axis. Its cross-section was nearly square, with an average radius of 0.005 cm.

Equi-inclination Weissenberg photographs were taken of the (*hk*0) and (*hk*1) levels. Since the preliminary analysis had indicated a layered structure with all atoms on mirror planes at $z=\frac{1}{4}$ and $z=\frac{3}{4}$, no z parameter refinement was planned, and additional level data were not collected. Intensities were collected with the use of the multiple film technique. Two film packs, composed of three sheets of Kodak No-Screen film separated by nickel foil, were exposed for 48 hours and 3 hours, respectively, for each level of data. Intensities were estimated visually by comparison with a calibrated intensity strip prepared using the 920 reflection of the crystal under investigation. All zones of the Weissenberg films were read, and intensities of crystallographically equivalent reflections were averaged. In all, 955 of a possible 1463 crystallographically different reflections had measurable intensities.

The averaged intensities were then correlated and scaled to the most heavily exposed film. For (*hk*0) and (*hk*1) films the average inter-film correlation factors within the film packs were 2.75 and 2.68, respectively, and the inter-pack factors were 14.68 and 13.80, respectively. The intensities were converted to experimental structure factors, F_o , in the usual way, with corrections being applied for the Lorentz and polarization effects, as well as for sample absorption. The absorption corrections used were based on a cylindrical crystal having $\mu R = 2.2$ (Bond, 1959).

The trial structure

In their work on Eu_3O_4 , Bärnighausen & Brauer (1962) found that the strong intensities showed general agreement with the strong reflections of calcium ferrite, $CaFe_2O_4$ (Decker & Kasper, 1957), thus indicating that the heavy atoms in Eu_3O_4 were probably located in positions similar to those occupied by the metal atoms in the reported structure of that compound. In the present study, good intensity agreement was found not only between the strong reflections, but also between many of the weaker reflections as well. Based on this agreement, a trial Eu_3O_4 structure containing trivalent europium ions in the iron positions and divalent europium ions in the calcium positions of $CaFe_2O_4$ was proposed.

To check this trial structure, calculations of structure factors and Fourier summations were made with the unit cell containing only europium atoms, using an over-all isotropic temperature factor of B=0.55 Å² and the scattering factors of Cromer & Waber (1965). Fourier maps appeared reasonable, and sections at $z = \frac{1}{4}$ and $\frac{3}{4}$ showed not only the three strong europium peaks of the asymmetric unit, but also showed evidence of four weak peaks at locations equivalent to oxygen positions in CaFe₂O₄. One anomalous intensity spike was present at a location related to that of the Eu(3) atom by a translation of $y \pm \frac{1}{2}$, but this was removed by subsequent refinement. The agreement index at this time, calculated with no oxygen atoms in the cell, was R=0.34.

The refinement

Refinement was carried out with the X-ray 63 system version of the Busing, Martin & Levy (1962) full-matrix

least-squares program, ORFLS. The function minimized was $\Sigma w(F_o - F_c)^2$, with $w = 50/F_o$ when $F_o > 50$ and w = 1 when $F_o \le 50$. Unobserved reflections were entered as the minimum observable threshold values, and were weighted w=1 when $F_c > F_{min}$ and w=0when $F_c < F_{min}$. Refinement was carried out on 23 variables, including the x, y, and B parameters for each of the seven atoms in the asymmetric unit, and two scale factors for the two levels of data. Starting x and y positional parameters were derived from the Fourier map, and individual isotropic temperature factors B=0.55 Å² were assigned to each atom. Ionic scattering factors were used, with those for Eu²⁺ and Eu³⁺ being taken from Cromer & Waber (1965), and those for O²⁻ being taken from Suzuki (1960).

The R value of the observed reflections with oxygen ions inserted in the lattice was 0.325; this was reduced to 0.195 after two least-squares cycles. Shifts in all parameters were appreciable, especially for the oxygen temperature factors. A Fourier map computed at this time showed sharpening of the electron density peaks, and reduction of the anomalous intensity spike to a negligible value.

Eight additional least-squares cycles produced convergence to an R of 0.095. A Fourier map computed at this time was quite similar to the one computed with R=0.195, except that the anomalous spike was completely absent.

At this point, it was noticed that low-angle reflections with $(\sin \theta)/\lambda < 0.30$ were systematically stronger than their calculated F_c values. Inspection of the Weissenberg films showed this to be related to a noticeable background which fell off abruptly at this angle. Accordingly, the 41 observed reflections within the affected range were given an empirical correction derived from a plot of their F_c/F_o ratios. Also at this time, nine reflections which were judged to be affected by secondary extinction were given zero weight. In addition, the 400 and 240 reflections, which lay on strong white radiation streaks, were also weighted zero. Two additional cycles of least-squares with the corrected data produced only slight changes in the parameters, and lowered R to 0.089.

The final parameters derived from the last leastsquares cycle are listed in Table 2, together with their errors, which were derived from the diagonal elements of the inverse least-squares matrix. All parameter shifts during the last least-squares cycle were less than 0.12σ , the average shift/error ratio being 0.039. The observed

0.0055

0.4297

0.0014

0.0013

O(3)

O(4)

structure factors are compared with those calculated from the final parameters in Table 3. The final R, omitting unobserved reflections, was 0.089, while the weighted R was 0.119 and R of the unobserved reflections was 0.091.

Two types of Fourier map were computed with the final parameters listed in Table 2, one being a difference map and the other a standard electron density map. The difference map showed that all ions were located at positions with nearly zero gradient, and no areas of appreciable electron density remained in the unit cell. As expected, the standard electron density map was little different from the one computed when R was 0.095.

Discussion

Differentiation of the cation positions

As mentioned previously, assignment of the Eu²⁺ and Eu³⁺ positions was based on the cation locations in CaFe₂O₄. These ions could not be differentiated in the final electron density map, even though ionic scattering factors were used, but their assignments were verified by packing considerations in the final structure. Fig.1 shows a cross section of the structure at $z = \frac{1}{4}$, with the ions drawn to the same scale as the cell edges. Eu²⁺ and Eu³⁺ radii of 1.17 and 0.95 Å, respectively, were calculated from the lattice parameters of EuO and cubic-phase Eu₂O₃ (Rau, 1964). These calculations were made assuming an O²⁻ radius of 1.40 Å (Pauling, 1960), and assuming europium-oxygen contact in the EuO and Eu_2O_3 structures. As shown by Fig. 1, an interchange of the divalent cation, Eu(3), for either of the trivalent cations, Eu(1) and Eu(2), would be impossible without changing some of the positional parameters.

A further check on the cation position assignments was made by means of a cursory X-ray study of the isomorphous compound $SrEu_2O_4$ (Glasser, Glasser & Schieber, 1965), which contains strontium in place of the divalent europium. A sample of this material produced a powder diffraction pattern which was found to be almost identical with that of Eu_3O_4 , the only notable differences being in the intensities of some of the lines. A set of 32 $SrEu_2O_4$ powder reflections which could be unequivocally indexed with unique indices was used to carry out three successive structure factor calculations, with the Sr^{2+} ion successively substituted in each of the three possible europium locations. Positional and thermal parameters listed in Table 2 were used for these calculations, and Sr^{2+} scat-

0.947

0.843

0.161

0.139

Table 2. Final parameters for Eu₃O₄

	Eu(1) and Eu(2) a:	re the trivalen	t ions. Eu(3) i	s the divalen	t ion.	
	x	$\sigma(x)$	у	$\sigma(y)$	Z	В	$\sigma(B)$
Eu(1)	0.4280	0.0001	0.6140	0.0001	0.250	0.476	0.008
Eu(2)	0.4136	0.0001	0.1106	0.0001	0.220	0.466	0.008
Eu(3)	0.2481	0.0001	0.3525	0.0001	0.220	0.594	0.009
O(Ì)	0.2150	0.0013	0.6824	0.0011	0.250	0.845	0.143
O(2)	0.1334	0.0011	0.9841	0.0009	0.250	0.606	0.111

0·2151 0·9207 0.0012

0.0012

0.250

0.250

Table 3. Observed and calculated structure factors

Each group of three columns list h, $10F_o$, and $10F_c$ respectively. E indicates reflections affected by extinction. * indicates unobserved reflections whose $10F_o$ are listed as ten times the minimum observable threshold.

H+0+0 4 774 511 6 45772-5041 8 399 -322 10 557 -572 12 23572 721 14 468 453 16 724 610 18 1373 -1320 20 257 -135 22 421 -1373 24 546 599 26 167 240 161 0 161 0 16	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		17 201-204 18 464 459 19 183-51 20 479 479 21 156+151 22 1409-61 23 167 228 4 294 -303 25 72-43 $H_{10},0$ 0 201-43 1 1730 1617 2 00 1 1730 1617 2 100 1101 4 733 -710		$ \begin{array}{c} 0 & 824 & 691 \\ 1 & 173 & -788 \\ 2 & 172 & 117 \\ 3 & 845 & -777 \\ 4 & 1668 & 4777 \\ 4 & 1668 & -124 \\ 6 & 624 & -621 \\ 7 & 1576 & -866 \\ 8 & 1518 & -77 \\ 9 & 647 & -622 \\ 10 & 1378 & -11 \\ 11 & 1296 & 133 \\ 12 & 485 & 4903 \\ 11 & 1296 & 133 \\ 12 & 485 & 4933 \\ 13 & 135 & 133 \\ 13 & 137 & -415 \\ \end{array} $	24 1588 -53 25 258 356 26 1208 40 17 906 40 H;3,1 0 346 -375 1 1992 -2281 2 1341 1281 3 1829 174 5 004 -1588 6 837 777 7 1019 995 8 1056 -1047 9 1218 -1244	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- '3,1 0 387 412 1 963 910 2 623 -633 3 897 -130 4 674 724 6 415 416 6 194+ -14C 7 1171 -1300 8 454 350 9 556 -268 1 200 -94 1 200 - 94 1 200 - 94 1 200 - 125 2 - 198 - 198	11 2110 71 2 373 -249 13 2066 - 69 14 491 531 15 268 223 16 561 579 17 1760 1 18 252 234 19 1556 -29 20 211 -204 21 1248 -131 23 848 -5 848 -5 849 1 0 945 871	13 705 -571 14 151- 162 15 1406 -180 16 175 -173 17 114- 180 19 324 304 H.25,1 0 688 474 1 18865 3 457 -805 5 193- 0 5 193- 0 5 193- 0 5 193- 0 5 193- 0
3 331 334 4 431 -445 5 324 431 -445 6 631 -644 8 485 -422 0 876 -422 0 876 -422 0 876 -422 10 10 -61 10 10 -61 10 10 -61 13 199 11 13 853 815 16 2122 14 17 550 526 19 770 -673 19 770 -673	0 313 -242 1 326 3307 -2566 3 4209E 4390 4 2021 1863 5 608 538 7 1863 7 8 1863 9 2498 -2680 10 1032 -111 1 513 -593 12 1999 -174 13 324 -360 14 1040 -1005	$\begin{array}{c} \text{H}, 11, 0\\ 1 & 361 & -360\\ 2 & 195 & 245\\ 3 & 1779 & -20\\ 4 & 1799 & -214\\ 5 & 204 & 205\\ 7 & 512 & -594\\ 7 & 512 & -594\\ 7 & 523 & -594\\ 10 & 226 & 291\\ 11 & 230 & -278\\ 12 & 662 & 654\\ 13 & 2112 & -112\\ 14 & 728 & 665\\ 15 & 2138 & -76\\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \mbox{ H,22,0$}\\ 0 \ 1174 \ -1142\\ 1 \ 395 \ 430\\ 2 \ 740 \ -667\\ 3 \ 809 \ -753\\ 4 \ 477 \ 486\\ 4 \ 413 \ 99\\ 6 \ 144 \ 4395\\ 6 \ 144 \ 4395\\ 8 \ 614 \ 423\\ 9 \ 748 \ 611\\ 10 \ 249 \ -192\\ 11 \ 365 \ -334\\ 13 \ 213 \ 224\\ 12 \ 213 \ 224\\ -496 \ -492 \$	$\begin{array}{c} \textbf{H}_{1}, 29, 0\\ 1 & 160 & -202\\ 2 & 159 & 37\\ 3 & 157 & -7\\ 4 & 154 & -48\\ 5 & 151 & 179 & -167\\ 7 & 154 & -167\\ 7 & 159 & -167\\ 7 & 129 & -51\\ 10 & 121 & 48\\ 11 & 112 & -92\\ 12 & 233 & 200\\ 13 & 80 & -127\\ 14 & 193\\ \textbf{H}_{2}, 0.0\\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
20 314 -976 21 644 -927 22 1924 -126 23 440 -927 24 478 -927 25 1966 -136 26 245 276 27 246 -136 28 714 112 28 714 112 29 25 987 3 44326-5409 4 1378 -1386 5 402 -386 5 149 -149	17 280 336 18 214 -43 19 274 293 20 540 339 21 640 -672 23 172* -110 21 136* -762 23 172* -121 26 297 -218 27 136 248 H;7.0 1 208 288 2 146* -28 2 146* -28 3 14	17 2120 117 18 577 -574 19 2020 -574 20 677 -672 21 1810 -62 22 1670 -8 23 1510 -125 24 102 -62 25 102 -02 26 406 493 H,1220 0 1196 -1206 1 2078 -2191 2 875 -986 6 970 -702	23 172 -420 24 900 -120 H,17,0 1 2054 177 2 2364 -234 4 2074 -249 4 2074 -249 5 2084 4 6 2104 -429 7 242 -335 9 293 -461 10 2155 185 11 249 -331 11 249 -331	ic isse - 22 it isse - 22 it is 212 it is 212 it is 212 it is 212 it isse - 134 20 264 - 290 it 238 206 H,23,0 1 213e 104 2 212e 216 3 212e - 214 3 212e - 215 5 210e - 174 7 206e - 157 7 206e - 157 6 157 7 206e - 158 7 20	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H:4+1 1 1111 1153 2 3073 - 1229 3 1264 - 136 * 3154 - 136 * 3167 - 136 * 3167 - 136 * 3167 - 136 * 3168 - 136 * 3168 - 136 * 3168 - 136 * 3168 - 136 * 3168 - 136 * 3178 - 136 1 75* - 20 1 467 - 460 1 467 - 460 1 490 - 673 1 500 - 671 1 500 - 189	H, 9,1 0 1053 -1049 1 944 -007 2 1417 14552 3 171 14552 3 171 -124 6 1013 970 1 205 1239 8 987 -986 9 300 -311 10 787 800 11 255 -237 12 57 -137 13 573 -137 14 626 692	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 1146 246 20 1314 C 21 209 279 22 466 -528 H,20,1 1 1416 1192 2 2115 32 3 2124 39 4 2127 -7 5 1145 -1017 7 1242 -1085 0 2114 - 525 7 1242 -1085 0 2114 - 557 7 1242 -1085 1 45 575 2 114 - 557 1 5 575 2 114 - 557 2 114 -	A R-8 680 5 195 336 6 181= 111 7 359 347 8 489 -413 10 701 -558 11 256 -240 12 144e -188 13 248 -361 14 124e 198 15 112e 48 16 422 396 17 134 132 6 427,1 0 350 298
$ \begin{array}{c} 6 & 6 \\ 6 & 5 \\ 7 & 2708 \\ 8 & 5009 \\ 10 & 247 & 309 \\ 11 & 209 & 291 \\ 12 & 1934 & -43 \\ 13 & 549 & 755 \\ 14 & 280 & 386 \\ 15 & 2009 & -1061 \\ 15 & 2009 & -1061 \\ 16 & 2159 & -40 \\ 19 & 570 & -456 \\ 20 & 2009 & -241 \\ 21 & 1944 & 856 \\ 22 & 1079 & 318 \\ 23 & 1794 & 319 \\ 23 & 1794 & 375 \\ 24 & 1964 & 977 \\ 25 & 1029 & -777 \\ 3 & 1029 & -777 \\ $	$ \begin{array}{c} 1776 & -1569 \\ 7726 & 7735 \\ 7 & 259 & -248 \\ 8 & 566 & 574 \\ 9 & 451 & -437 \\ 10 & 1909 & -165 \\ 11 & 105\pi & -165 \\ 11 & 105\pi & -733 \\ 13 & 279\pi & -733 \\ 14 & 184\pi & -781 \\ 15 & 2700 & 379 \\ 16 & 214\pi & 136 \\ 7 & 215\pi & -6 \\ 17 & 215\pi & -6 \\ 18 & 780 & 701 \\ 7 & 215\pi & -6 \\ 18 & 780 & 701 \\ 7 & 216\pi & -22 \\ 20 & 722 & 682 \\ 22 & 784\pi & 281 \\ \end{array} $	5 7046 -2715 6 886 940 7 1416 1550 8 741 808 9 513 579 10 229 -310 11 1557 1575 12 582 -637 14 632 -637 15 2144 37 16 2144 37 17 493 -403 18 236 246 20 544 20 20 544 20 21 44 20 21	14 2267 -3469 15 344 422 16 199* -57 17 466 457 18 247 243 20 212 277 21 302-350 21 322 -457 24 147 -150 H*18;0 0 1339 1133 1 853 -716 1 467	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 134 170 3 1244 - 79 4 128 173 5 1174 - 46 6 1124 107 20 8 998 - 141 9 147 210 10 800 - 133 H,32,0 0 514 -508 1 1068 - 68 2 161 - 197 3 446 506 9 197 - 15		15 211- 277 16 300 -423 17 211- 104 18 285 349 19 985 9.38 20 358 -397 21 156 -137 24 126 -137 24 126 -137 24 126 -137 25 562 -671 26 177 210 H:10.1 1 1734 1758 2 1560 1601 3 170 12	23 125* 1 24 144 10C 25 80* -74 Hr15,1 0 907 - 1032 2 716 722 3 190* 6 4 1104 - 04 4 1104 - 04 7 107 - 1032 7 107 - 1032 7 107 - 1032 7 107 - 1037 7 422 - 457 9 705 - 100 9 7051 - 109	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
26 123* * #5 27 262 - 1356 28 69* -65 H 4340 1 100* - #2 2 100* - 76 3 861 - #31 4 249 - 789 5 140* - 109 6 99* -109 6 99* -109 7 138* 61 8 43P -670 7 158* 61 8 43P -670 7 128* 64 9 43P -670 7 128* 66 9 66 9 66 9 66 9 66	23 1806 - 30 24 489 -443 25 133 - 65 26 485 - 511 27 98 143 H,8,0 0 30306 3194 1 2318 2417 2 824 761 3 443 441 4 544 -459 5 2085 2138 7 196 -1590 7 196 - 127	23 4 466 512 24 1260 -15 25 143 -221 26 774 -158 H,13,0 1 1855 -145 2 417 384 3 210 -302 4 1900 -154 5 1924 -188 7 797 362 6 1955 -68 7 207 -51 1 4 11 546	$\begin{array}{c} 4 & 1024 & -961 \\ 5 & 861 & -769 \\ 6 & 1022 & -937 \\ 7 & 434 & 511 \\ 8 & 1149 & -1128 \\ 9 & 323 & -318 \\ 9 & 323 & -318 \\ 12 & 632 & -333 \\ 13 & 288 & -302 \\ 14 & 560 & 823 \\ 15 & 274 & 280 \\ 17 & 4137 & -364 \\ 12 & 0127 & -261 \\ 17 & 4137 & -364 \\ 19 & 1047 & -261 \\ 19 & 1047 & -261 \\ 21 & 178 & -228 \\ 21 & 178 & -228 \\ 21 & 178 & -228 \\ 21 & 218 & -228 \\ 22 & -288 & -228 \\ 23 & -288 & -288 \\ 24 & -28$	$\begin{array}{c} 206 - 228 \\ 5 & 417 & 401 \\ 6 & 805 & 711 \\ 7 & 200 - 136 \\ 8 & 295 & -273 \\ 9 & 220 - 782 \\ 0 & 105 & -782 \\ 11 & 153 & -407 \\ 12 & 548 & -518 \\ 13 & 1668 & -518 \\ 13 & 1668 & -518 \\ 13 & 1668 & -128 \\ 14 & 179 & 198 \\ 15 & 514 & 483 \\ 17 & 297 & 289 \\ 16 & 373 & -138 \\ 17 & 397 & 289 \\ 16 & 373 & -138 \\ 17 & 397 & 289 \\ 18 & 516 & -138 \\ 17 & 297 & 289 \\ 18 & 516 & -138 \\ 17 & 297 & 289 \\ 18 & 516 & -138 \\ 17 & 297 & 289 \\ 18 & 516 & -138 \\ 17 & 297 & 289 \\ 18 & 516 & -138 \\ 18 & -138 & -138 \\ 17 & -138 & -138 \\ 18 & -138 & -138 \\$	6 423 457 7 126 163 8 166 191 H,33.0 1 111 155 8 64 21 3 80 24 4 756 72 5 126 -160 H+0.1 4 3506(384) 6 502 418 8 1734 -1856	$ \begin{array}{c} 1 & 140 & 162 \\ 4 & 1470 & 1532 \\ 5 & 444 & -406 \\ 6 & 1514 & -1445 \\ 7 & 714 & -657 \\ 9 & 1542 & 1495 \\ 10 & 776 & -424 \\ 11 & 622 & 647 \\ 12 & 868 & 949 \\ 11 & 622 & 647 \\ 12 & 868 & -1041 \\ 13 & 769 & 941 \\ 14 & 864 & -1041 \\ 15 & 399 & 4420 \\ 16 & 776 & -360 \\ 18 & 677 & -663 \\ 19 & 770 & -701 \\ 20 & 591 & 575 \\ \end{array} $	$ \begin{array}{c} 4 & 1579 & 1627\\ 5 & 1603 & -1366\\ 6 & 350 & 293\\ 7 & 1512 & -1547\\ 9 & 1013 & -1.165\\ 7 & 1512 & -1.057\\ 9 & 1013 & -1.153\\ 110 & -1.057\\ 110 & -1.057\\ 112 & 229 & -389\\ 113 & 629 & -914\\ 12 & 629 & -389\\ 13 & 629 & -914\\ 14 & 663 & 680\\ 15 & 357 & 366\\ 15 & 4516 & -237\\ 16 & 206 & -237\\ 17 & 966 & -237\\ 21 & 180 & -237\\ 21 & 180 & -237\\ 21 & 180 & -237\\ 21 & 180 & -237\\ 21 & 180 & -237\\ 21 & 180 & -237\\ 21 & 180 & -237\\ 21 & 180 & -237\\ 21 & 180 & -237\\ 21 & 180 & -237\\ 21 & 180 & -237\\ 21 & 180 & -237\\ 21 & 180 & -237\\ 21 & 180 & -237\\ 21 & 180 & -237\\ 21 & 180 & -237\\ 21 & 210 & -237\\ 21$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 4 \\ 5 & 212* - 126 \\ 5 & 212* & 103 \\ 6 & 659 \\ 5 & 576 \\ 8 & 313 \\ - 346 \\ 0 & 704* - 155 \\ 0 & 704* - 158 \\ 10 & 700* - 148 \\ 10 & 700* - 148 \\ 11 & 521 \\ - 403 \\ 13 & 665 \\ 556 \\ 14 & 300 \\ 347 \\ 15 & 771 \\ - 712 \\ 15 & 316 \\ 359 \\ 14 & 359 \\ 21 & 67* \\ 73 \\ 20 & 246 \\ - 253 \\ 21 & 87* \\ 73 \end{array} $	1 636 497 2 454 394 3 165 48 4 457 397 5 418 -999 6 156 -26 7 560 -476 7 360 -476 7 360 -476 7 360 -375 11 13 215 12 114 -9 13 406 374 14 219 185 15 13 137 +,29,1
13 2000 -34 14 583 665 15 514 -592 16 212 -27 17 2045 -310 19 5115 -931 20 639 -586 21 436 425 22 1916 -59 23 244 262 24 463 496 25 1945 866 26 391 448 26 666 114 H ₄ 40	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		12 416 -409 14 705 765 16 1279 1185 18 460 278 2007 -218 21 509 -166 24 1599 -166 26 121* 0 K+1.1 2 1546 1537 3 1621 -1658 4 1577 -122 1 176 1163 7 154* -178	21 291 - 387 22 183 - 64 23 254 250 25 370 399 26 210 - 314 27 26 315 H+6-1 1 2804 - 2805 2 1775 - 1656 3 386 - 1562 4 1064 - 1841 0 312 - 209 7 2513 2258 8 1062 1001	22 167* -212 31 51% -65 24 133* -182 25 113* -182 26 67* 131 H,111 0 831 868 1 1011 -1025 2 776 -780 3 419 447 4 1051 1075 5 82 -065 6 805 -066 8 215 181 9 372 -437	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \mbox{H}_{1}22,1\\ 1&290&256\\ 2&1502&-951\\ 3&2118&-278\\ 4&1164&-976\\ 5&2108&-109\\ 6&2078&-211\\ 7&2078&-162\\ 6&800&766\\ 9&2028&-162\\ 10&968&-731\\ 1&2258&236\\ 10&968&-191\\ 1&2258&236\\ 13&248&-182\\ 13&248&-182\\ 14&419&-380\\ 5&168&-73\\ \end{array}$	0 399 -287 1 1540 -144 2 329 317 3 1510 -143 4 1490 -179 5 199 -174 6 337 287 7 1360 -18 8 428 -424 9 152 136 10 1160 -12 11 146 159 12 307 -523 13 83° -65 H,30,1
0 3728E-5596 1 1167 -1352 4 922 -288 3 127e -79 4 136e -208 5 4514 -1461 9 4244 -1461 9 4244 -1461 1 186 4138 8 650 693 1 676 -25 10 463 4073 1 8 650 -682 12 2111 -2410 16 630 -680 16 5009 -126 16 5009 -749	H, 9,0 1 240 239 2 161 -131 3 333 -17 4 168 -10 5 058 -506 6 293 -240 7 422 -236 8 376 267 9 616 -658 10 1964 48 11 822 -726 12 2059 169 12 2059 169 13 2019 -810	1 A43 935 2 1655 - 1831 3 479 550 4 1629 1654 5 839 925 6 769 825 9 784 - 728 9 784 - 728 10 1124 - 1044 11 839 - 758 12 359 - 381 13 247 169 14 1133 - 1133 15 2468 1329 16 69 693 16 1995 934	14 275 293 15 421 345 16 225 -174 17 205 331 18 318 -311 19 318 -311 10 151+ 100 21 206 -280 149 -262 H,20,0 0 690 573 1 875 -803 2 3 149 -262 H,20,0 0 690 573 1 875 -803 2 3 1233 -1552 4 066 525	$ \begin{bmatrix} 8 & 333 & 343 \\ H_{*}26_{*}0 \\ 0 & 1025 & 940 \\ 1 & 105* & 217 \\ 2 & 945* & 217 \\ 2 & 945* & 217 \\ 3 & 846 & 718 \\ 4 & 101* & -78 \\ 5 & 189* & -111 \\ 6 & 1000 & -886 \\ 7 & 182* & 115 \\ 8 & 352 & -315 \\ 9 & 671 & -613 \\ 10 & 165* & -590 \\ 11 & 165* & -115 \\ 2 & 466 & 614 \\ 3 & 140* & -115 \\ \end{bmatrix} $	$\begin{array}{c} \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$	9 364 317 10 703 747 11 933 -1056 12 334 352 11 1274 -14 52 14 1274 -14 53 14 1372 -14 53 14 1374 -14 137 14 13 1374 -14 13		21 143 228 22 1264 -34 23 1207 -169 24 120 -141 w,17,1 0 518 452 1 736 -726 2 203* 61 3 408 925 4 205* -209 5 342 -388 6 205 -068 6 210 -127 9 565 -648 10 237 315	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 450 392 2 367 -123 3 136* 5 4 475 -413 5 446 -354 6 125* -88 7 366 -365 8 203 214 9 100* -24 10 415 379 11 278 252 12 9R 115 H*31*1 0 122* -87 1 167 -198 2 182 -196
		100, 100, 100, 100, 100, 100, 100, 100,	$\begin{array}{c} - & - & - & - & - & - \\ - & - & - & - &$		27 105 - 378 H.2.1 2 533 513 3 111- 109 4 544 566 5 2730 -2675 6 416 -350 7 2396 -2645 6 476 -458 10 297 -328 11 1095 1178 1 2192 -90 13 1346 1587 14 2022 247	27 35 -64 μ,7,1 0 142e -98 1 1618 1659 2 146e -22 3 1246e -1277 4 6 -1277 6 165 163 164 -30 7 1860 197 6 163 143 7 1169 -1078 8 50 410 9 809 809 809 101 111 1111 1112 -1202 12 1994 400 111 111 1112 -1202 1494 -202 111 111 1112 -1202 111 111 1112 -1202 1494 -202 111 111 1112 -1202 111 111 1112 -1202 111 111 111 1112 -1202 111 111 111 1112 -1202 111 111 111 1112 -1202 111 111 111 1112 -1202 111 111 1	$\begin{array}{c} \mbox{ \mathbf{H}, 12, 1$} \\ 1 \ 1733 \ 1782 \\ 2 \ 1079 \ -1108 \\ 3 \ 203 \ 182 \\ 4 \ 1003 \ -1084 \\ 5 \ 1308 \ -1527 \\ 7 \ 1108 \ -1527 \\ 7 \ 1108 \ -712 \\ 7 \ 1108 \ -712 \\ 8 \ 727 \ -718 \\ 9 \ 729 \ -736 \\ 10 \ 804 \ 804 \\ 10 \ 804 \ 804 \\ 11 \ 870 \ 935 \\ 12 \ 324 \ 316 \\ 13 \ 835 \ 841 \\ 14 \ 200 \ -314 \\ 13 \ 335 \ 841 \\ 15 \ 331 \ 355 \end{array}$	11 712* 148 12 758 265 13 993 -991 14 705* -57 15 246 320 17 186* -27 16 175* -271 17 186* -27 10 150* 6 21 134* -59 22 715 265 23 97* 17 +184;1 1 706* 214	$\begin{array}{c} 9 & 54.5 & -476.0\\ 10 & 396.0 & 346.\\ 11 & 558.0 & 403.\\ 12 & 347324.\\ 13 & 171.e & 94.\\ 14 & 163.e & -25.\\ 15 & 462.0 & +37.\\ 16 & 401329.\\ 16 & 401329.\\ 11 & 101128.\\ 18 & 113.e & -139.\\ 18$	3 263 212 4 207 199 5 315 -328 6 131 86 6 131 86 7 101 47 8 192 201 9 222 -210 10 109 -155 w.32:1 1 228 -256 2 412 -370 3 493 -394 5 177 198 9 277 -255
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 2300 2462 3 2003 -2199 4 1902 -2057 5 887 -997 6 394 -467 7 207 247 8 1757 -1931 9 1285 1477 10 1106 1313	# 422 417 9 240 19C 10 212* -284 11 293 338 12 480 -523 13 215* 78 14 606 -569 15 242 -185 16 207* 179	22 85° -98 H,21,0 1 215° -251 2 295 238 3 215° -105 4 215° 149 5 215° -3	11 144 -181 12 135 113 13 125 -16 14 114 -29 15 299 314 16 84 -120 H,28,0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13 700 626 14 392 -356 15 622 -625 16 1010 -1002 17 669 715 18 288 -274 19 282 -229 20 273 263 21 471 446 22 790 745	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 1226 1276 3 2070 87 4 1179 1264 5 2090 -163 6 235 204 7 2110 -41 8 1051 -945 9 2120 -169 10 1069 -964	$\begin{array}{c} 5 & 21136 & -98 \\ 4 & 339 & -294 \\ 5 & 721 & 621 \\ 6 & 1986 & 44 \\ 7 & 938 & 775 \\ 8 & 1926 & 206 \\ 9 & 1686 & 158 \\ 10 & 223 & 264 \\ 11 & 463 & -426 \\ 12 & 1696 & -98 \end{array}$, 242 270 8 282 311 H,33,1 0 109 96 1 261 254 2 184 -221 3 74 42 4 68* 90

tering factors (Cromer & Waber, 1965) were used in place of the Eu²⁺ scattering factors. The best structure factor agreement (R=0.17) was obtained with Sr²⁺ in the location assigned to the divalent europium ion, Eu(3), of the Eu₃O₄ structure. The poorer agreement (R=0.22 and R=0.21) when Sr²⁺ was assigned to the other two possible europium locations was taken as evidence to rule out those lattice sites for possible occupancy by the divalent cation.

Bonding and coordination

A stereoscopic illustration of the Eu_3O_4 structure, suitable for three-dimensional viewing with a standard 3-D viewer, is shown in Fig.2. This illustration was prepared by Dr C.K.Johnson of Oak Ridge National Laboratory, using his crystal structure plotting program, ORTEP (Johnson, 1965). The view is along the short *c* axis, and shows the two atom layers and their relationship to the unit cell edges. Bond lengths shown in the figure were obtained when *R* was 0.095, and in some cases differ slightly from the final bond lengths.

As may be deduced from Fig.2, each europium cation is coordinated with oxygen atoms at three levels along the c axis, *i.e.* for europium ions with $z = \frac{1}{4}$, coordinated oxygen atoms are at $z = -\frac{1}{4}, \frac{1}{4}$, and $\frac{3}{4}$. The coordination polyhedra are shown in Fig.3, where the drawings are tilted somewhat about the x axis to separate the projected images of oxygen ions at $z = -\frac{1}{4}$ and $z = \frac{3}{4}$. Bond lengths and angles within these polyhedra, as well as nearest europium–europium distances, are listed in Table 4. Average standard deviations of the distances are 0.001 Å for Eu–Eu, 0.011 Å for Eu–O, and 0.017 Å for O–O, while the deviations of the angles average about 0.3°.

As shown in Fig. 3(a) and (b), the trivalent europium atoms, Eu(1) and Eu(2), are coordinated to six oxygen atoms forming distorted octahedra, the Eu(2) octahedron showing the greatest deviation from regularity. Average Eu³⁺-O²⁻ distances are 2.337 and 2.343 Å, respectively, in the Eu(1) and Eu(2) polyhedra, while average O²⁻-O²⁻ distances are 3.295 Å in the former and 3.280 Å in the latter. Both the shortest (2.955 Å) and the longest (3.892 Å) significant oxygen-oxygen distances in Eu₃O₄ occur in the Eu(2) polyhedron. The average bond angle involving two adjacent oxygen atoms and europium is 89.9° in the Eu(1) polyhedron and 89.5° in the Eu(2) polyhedron, both very close to the undistorted octahedral value of 90° .

In the divalent Eu(3) polyhedron [Fig. 3(c)] the europium ion is located in the center of a triangular prism whose interfacial angles are 49.8° , 62.9° , and 67.3° . Six oxygen ions, three at $z = -\frac{1}{4}$ and three at $z = \frac{3}{4}$, make up this prism, and two additional oxygen ions, located out from the two wide faces of the prism on the $z = \frac{1}{4}$

Fig. 1. Cross section of the Eu₃O₄ structure at $z = \frac{1}{4}$. The ions are drawn to the same scale as the cell edges.

Fig.2. Stereoscopic illustration of the Eu_3O_4 structure viewed along the c axis. The box represents one unit cell.

Table 4. Bond lengths and angles in Eu₃O₄

Primed ions have $z = \frac{3}{4}$ or $z = -\frac{1}{4}$, unprimed ions have $z = \frac{1}{4}$. The second column in each grouping indicates the bond or angle multiplicity. Average standard deviations of the distances are 0.001 Å for Eu-Eu, 0.011 Å for Eu-O, and 0.017 Å for O-O; the deviations of the angles average about 0.3°.

Within the trivalent Eu(1) polyhedron

$\begin{array}{l} Eu(1)-O(1)\\ Eu(1)-O(2)\\ Eu(1)-O(2')\\ Eu(1)-O(3')\\ O(1) -O(2')\\ O(1) -O(2')\\ O(1) -O(2')\\ O(2) -O(2')\\ O(2) -O(2')\\ O(2')-O(2')\\ O(2')-O(3')\\ O(3')-O(3')\\ O(3')-O(3') \end{array}$	1 2 2 2 2 2 2 2 1 2 1	2·301 Å 2·386 2·430 2·236 3·334 3·342 3·234 3·234 3·285 3·502 3·069 3·502	$\begin{array}{c} O(1) -Eu(1) -O(2) \\ O(2') -Eu(1) -O(3') \\ O(1) -Eu(1) -O(2') \\ O(1) -Eu(1) -O(3') \\ O(2) -Eu(1) -O(2') \\ O(2) -Eu(1) -O(3') \\ O(2') -Eu(1) -O(3') \\ O(3') -Eu(1) -O(3') \\ O(3') -Eu(1) -O(3') \end{array}$	1 2 2 2 2 2 1 2 1	171.3° 172.8 89.6 94.9 84.4 90.5 92.2 82.1 103.1
Within the triv	valent Eu	(2) polyhedron			
Eu(2)-O(3)	1	2·297 Å	O(3) -Eu(2)-O(4)	1	152·2°
Eu(2)-O(4)	1	2.295	O(1')-Eu(2)-O(4')	2	166.3
Eu(2) - O(1')	2	2.345	$O(3) = Eu(2) = O(1^{-1})$ $O(3) = Eu(2) = O(4^{-1})$	2	83.0
Eu(2) = O(4) O(3) = O(1')	$\frac{2}{2}$	2.388	O(4) -Eu(2) -O(4')	$\frac{2}{2}$	114.0
O(3) - O(4')	$\frac{1}{2}$	3.104	O(4) -Eu(2) -O(4')	2	78.2
O(4) - O(1')	2	3.892	O(1') - Eu(2) - O(1')	1	96.6
O(4) –O(4')	2	2.955	O(1')-Eu(2)-O(4')	2	82.9
O(1') - O(1')	1	3.502	$O(4^{2}) - Eu(2) - O(4^{2})$	1	94.3
O(1) = O(4) O(4') = O(4')	2	3.502			
Within the div	valent Eu	(3) polyhedron			
$E_{11}(3) - O(4')$	2	2.638 Å	O(3) - Eu(3) - O(3)	1	128·5°
Eu(3) - O(3)	1	2.955	O(3) - Eu(3) - O(1)*	1	112.2
Eu(3) - O(1')	2	2.722	$O(1) - Eu(3) - O(3)^*$	1	119.3
Eu(3) - O(3)	1	2.720	O(3) - Eu(3) - O(4')	2	67.2
$Eu(3) - O(2^{\circ})$ Eu(3) - O(1)*	2	2.048	O(3) = Eu(3) = O(1)	2	69.2
O(3) - O(4)'	2	3.104	O(3) - Eu(3) - O(2')	$\overline{2}$	75.5
O(3) - O(1')	$\overline{2}$	3.342	O(4') - Eu(3) - O(1')	2	84.3
O(3) - O(1')	2	3.088	O(1')-Eu(3)-O(1')	1	80.1
O(3) - O(2')	2	3.285	O(4')-Eu(3)-O(4')	1	83.2
O(4') - O(4')	1	3.502	$O(1^{\circ}) = Eu(3) = O(2^{\circ})$ $O(2^{\circ}) = Eu(3) = O(2^{\circ})$	2	87.8
O(4) = O(1)	1	3.502	O(2') = Eu(3) = O(2') O(2') = Eu(3) = O(4')	2	71.4
O(1') - O(2')	2	3.728	O(4') - O(1') - O(2')	2	49.8
O(2') - O(2')	1	3.502	O(1')-O(2')-O(4')	2	62.9
O(2') -O(4')	2	3.084	O(2')-O(4')-O(1')	2	67.3

* Quantities involving the ninth 'non-coordinated' oxygen ion.

Nearest europium-europium distances

-		•
Eu(1)-Eu(3)	1	3∙638 Å
Eu(1) - Eu(1')	2	3.568
Eu(1) - Eu(3')	2	3.728
Eu(1) - Eu(2')	2	4.079
Eu(1) - Eu(3')	2	3.805
Eu(1) - Eu(2')	2	3.865
Eu(1) - Eu(1)	2	3.502
Eu(2)-Eu(3)	1	3.360
Eu(2) - Eu(1')	2	3.865
Eu(2) - Eu(3')	2	3.925
Eu(2) - Eu(2')	2	3.634
Eu(2)-Eu(3)	1	3.403
Eu(2) - Eu(1')	2	4.079
Eu(2) - Eu(2)	2	3.502
Eu(3)-Eu(3)	1	3.403
Eu(3) - Eu(1')	2	3.805
Eu(3) - Eu(2)	1	3.360
Eu(3)-Eu(1')	2	3.728
Eu(3) - Eu(1)	1	3.638
$E_{U}(3) - E_{U}(2')$	2	3.925
Eu(3) - Eu(3)	2	3.502
2-(2) 24(2)		

level, complete the eightfold coordination. A ninth oxygen ion, located out from the third prism face on the $z=\frac{1}{4}$ level, is 3.991 Å from the central europium ion and is probably too distant to be considered in the primary coordination shell. This ninth oxygen ion is indicated by the dashed bond in Fig. 3(c), and the few quantities involving it are marked with an asterisk in Table 4. The average Eu²⁺-O²⁻ distance, omitting this ninth oxygen ion, is 2.711 Å, and the average O²⁻-O²⁻ distance is 3.351 Å, both slightly greater than similar distances in the trivalent europium polyhedra.

The metal ions form a pseudo-hexagonal network, with half the europium ions on $z = \frac{1}{4}$ levels and half on $z = \frac{3}{4}$ levels. Each Eu(1) ion has 13 nearest europium neighbors at an average distance of 3.749 Å, each Eu(2) ion has 12 nearest europium neighbors at an average distance of 3.731 Å, and each Eu(3) ion has 11 nearest europium neighbors at an average distance of 3.666 Å.

Most MN_2O_4 compounds (where M is a divalent metal and N is a trivalent metal) crystallize in structures which are characterized by close-packing of the anions (*i.e.* spinel structures, *etc.*). In the case of Eu₃O₄ the cations are too large to be accommodated interstitially in a close-packed oxygen lattice, and cation size therefore plays an important role in determining the structure. If cation/anion radius ratios are considered, that of Eu³⁺/O²⁻ (ratio = 0.68) predicts sixfold coordination, and that of Eu²⁺/O²⁻ (ratio = 0.84) predicts eight- or ninefold coordination (Pauling, 1960). The fact that these predicted coordinations coincide with those observed for the two types of europium in Eu₃O₄ further tends to confirm the assignment of cation locations in the structure.

Other similar structures

The structural similarity of Eu_3O_4 and $CaFe_2O_4$ has already been pointed out. It should be mentioned that β -CaCr₂O₄ (Hill, Peiser & Rait, 1956) and PbBi₂S₄ (Wickman, 1951) are also similar. However, in the reported structure analysis of the latter compound the cation locations were probably incorrectly assigned. In particular, it seems unlikely that one of the trivalent bismuth ions should occupy the position of eightfold coordination, while the other trivalent bismuth ion and the divalent lead ion occupy the two octahedral sites.

An interesting variation of the Eu_3O_4 structure is exhibited by Rh_4P_3 (Rundqvist & Hede, 1960). In this compound, half the atoms are moved one half of a translation distance along the short axis of the unit cell, resulting in a structure having each phosphorus atom at the center of a trigonal prism of rhodium atoms.

A number of people contributed vitally to the present study. These include especially Dr S. F. Bartram of the writer's laboratory, who assisted throughout the course of the structure determination and provided many valuable discussions; Dr J. M. Stewart of the University of Maryland, who furnished the X-ray 63 computer program and provided much information on its use; Dr M. Schieber of the Massachusetts Institute of Technology National Magnet Laboratory, who provided a specimen of $SrEu_2O_4$; and Dr C. K. Johnson of the Oak Ridge National Laboratory, who provided the stereoscopic illustration of Fig. 3. The writer is deeply grateful to these persons for their assistance.

References

- Achard, J. C. (1960). C. R. Acad. Sci., Paris, 250, 3025. Bärnighausen, H. & Brauer, G. (1962). Acta Cryst. 15, 1059.
- BOND, W. L. (1959). Acta Cryst. 12, 375.
- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). Oak Ridge National Laboratory Report ORNL-TM-305.
- CROMER, D. T. & WABER, J. T. (1965). Acta Cryst. 18, 104.

Fig. 3. Europium coordination polyhedra in Eu₃O₄. Open circles have $z=\frac{1}{4}$, dashed circles have $z=-\frac{1}{4}$, and stippled circles have $z=\frac{1}{4}$. (a) Trivalent Eu(1) polyhedron. (b) Trivalent Eu(2) polyhedron. (c) Divalent Eu(3) polyhedron.

723

- DECKER, B. F. & KASPER, J. S. (1957). Acta Cryst. 10, 332.
- EICK, H. A., BAENZIGER, N. C. & EYRING, L. (1956). J. Amer. Chem. Soc. 78, 5147.
- GLASSER, F. P., GLASSER, L. S. D. & SCHIEBER, M. (1965). Amer. Ceram. Soc. Bull. 44, 299, Abstract 7-B-65.
- HILL, P. M., PEISER, H. S. & RAIT, J. R. (1956). Acta Cryst. 9, 981.
- JOHNSON, C. K. (1965). Oak Ridge National Laboratory Report ORNL-3794.
- MUELLER, M. H., HEATON, L. & MILLER, K. T. (1960). Acta Cryst. 13, 828.

- PAULING, L. (1960). The Nature of the Chemical Bond, Chap. 13. Ithaca: Cornell Univ. Press.
- RAU, R. C. (1964). Rare Earth Research II (ed. Vorres, K. S.), p. 117. New York: Gordon and Breach.
- RUNDQVIST, S. & HEDE, A. (1960). Acta Chem. Scand. 14, 893.
- SCHIEBER, M. & HOLMES, L. (1964). Proc. Brit. Ceram. Soc. 2, 139.
- STEWART, J. M. & HIGH, D. F. (1964). Abstracts A.C.A. Bozeman Meeting, B-13, p. 29.
- SUZUKI, T. (1960). Acta Cryst. 13, 279.
- WICKMAN, F. E. (1951). Ark. Min. Geol. 1, 219.

Acta Cryst. (1966). 20, 723

Refinement of the Crystal Structure of In₂O₃ at two Wavelengths

BY M. MAREZIO

Bell Telephone Laboratories, Murray Hill, N.J., U.S.A.

(Received 17 June 1965 and in revised form 1 October 1965)

Indium sesquioxide is cubic with 16 molecules per unit cell ($a = 10.117 \pm 0.001$), space group Ia3. The crystal structure has been refined from single-crystal X-ray diffraction data with a precision corresponding to an R index of 0.03. The interatomic distances have been determined to an accuracy of 0.01 Å for the In-O distances and 0.02 Å for the O-O distances. The In-O bond lengths are: (6) In(1)-O 2.18 Å, (2) In(2)-O 2·13 Å, (2) In(2)-O 2·19 Å, (2) In (2)-O 2·23 Å. The large difference in the In(2)-O bond lengths is attributed to an unequal distribution of the repulsive forces among the oxygen atoms that form the polyhedron around In(2).

Since the absorption correction was rather high, the intensity data were taken with two radiations. Mo $K\alpha$ and Cu $K\alpha$, and two independent refinements were made and compared. Contrary to what one would expect, the extinction correction is much larger for the Mo data than for the Cu data.

The possible existence of a high pressure phase of In_2O_3 is discussed.

Introduction

Many of the metallic sesquioxides, M_2O_3 , crystallize in the corundum type and the A, B and C rare-earth sesquioxide structures. The corundum type and the Amodification are trigonal, space group symmetry $R\overline{3}c$ and $P\bar{3}m1$ respectively, the B modification is monoclinic, C2/m, and the C modification is cubic, Ia3. This paper reports the refinement of the crystal structure of indium sesquioxide which crystallizes in the cubic C modification (Zachariasen, 1927). Many other sesquioxides crystallize with the same structure, for instance: Sc₂O₃, Y₂O₃, Tl₂O₃, Pu₂O₃, Cm₂O₃, Am₂O₃, R_2O_3 (R = rare earth) etc. Some of these oxides can also exist in the A and/or B forms. The atomic arrangement of the C modification was first determined for the mineral bixbyite (Fe,Mn)₂O₃ (Pauling & Shappell, 1930). In 1956 Dachs refined this structure and gave a more detailed description of it. Since then neutron diffraction studies using powders have been made on several of the C type rare-earth sesquioxides (Table 5).

Recently Remeika & Spencer (1964) of this laboratory prepared single crystals of In₂O₃ by a flux technique for electrical conductivity measurements. These crystals have the shape of rectangular prisms and are

dark green. Since single crystals of In₂O₃ were available, an accurate determination of a C modification structure was undertaken with the use of modern techniques to measure X-ray intensities. This refinement provides accurate values of the In-O distance which are necessary for the theoretical and experimental studies on In₂O₃ being carried out at present in this laboratory.

Crystallographic data

Crystals of In₂O₃ are body-centered cubic with 16 molecular weights (M.W. 277.64) in a cell of dimension $a = 10.117 \pm 0.001$ Å (Roth, 1957), the calculated density is 7.120 g.cm⁻³; *hkl* is present only with h+k+l=2n and 0kl only with k, l=2n; the space group is hence taken as Ia3 (T_{h}^{7}) . The 32 metallic atoms are in the special positions, 24 in (d) and 8 in (b), while the 48 oxygen atoms are in the general position.

Experimental

All intensity measurements were made with a General Electric XRD-5 spectrometer equipped with a singlecrystal orienter and a scintillation counter. The integrated intensities were obtained manually with the